Personalized Museum Tour on a Mobile Device

July 13, 2007

Rody van Sambeek and Yuri Schuurmans

Supervisor: Dr. Lora Aroyo
Introduction

• Museum experience

• Motivation
 – Improve experience by personalized tour

• Problem statement
 – Virtual tour to physical tour
Approach

• How a personalized tour can be implemented on a mobile device:
 ► What makes a good museum tour? (both)
 – Which technologies can be used for a mobile museum tour? (both)
 – How can we import a virtual museum tour and synchronize user data on a mobile device? (Rody)
 – How can a virtual museum tour be mapped to the physical space? (Yuri)
 – How can we retrieve the user’s position in a museum? (both)
 – How can we implement user guidance in a mobile museum tour? (both)
Approach

- Exploration phase
- Design phase
- Implementation phase
Approach

- Exploration phase
 - Museum tour analysis
 - Scenarios
 - Requirements
 - Technology analysis

- Design phase

- Implementation phase
Approach

- Exploration phase
 - Museum tour analysis
 - Scenarios
 - Requirements
 - Technology analysis
- Design phase
- Implementation phase
Exploration phase

Museum tour analysis

- Different types of museum tours
 - Human guided tours
 - Audio tours
 - Online internet tours
 - Multimedia (PDA) tours

- Criteria
- Derived properties of a good mobile museum tour
Exploration phase

Museum tour analysis

- Different types of museum tours
 - Human guided tours
 - Audio tours
 - Online internet tours
 - Multimedia (PDA) tours

- Criteria
- Derived properties of a good mobile museum tour
Exploration phase

Museum tour analysis

- Different types of museum tours
 - Human guided tours
 - Audio tours
 - Online internet tours
 - Multimedia (PDA) tours

- Criteria
- Derived properties of a good mobile museum tour
Exploration phase

Museum tour analysis

- Different types of museum tours
 - Human guided tours
 - Audio tours
 - Online internet tours
 - Multimedia (PDA) tours

- Criteria
- Derived properties of a good mobile museum tour
Exploration phase

Museum tour analysis

- Different types of museum tours
 - Human guided tours
 - Audio tours
 - Online internet tours
 - Multimedia (PDA) tours

- Criteria
- Derived properties of a good mobile museum tour
Exploration phase

Museum tour analysis

• Different types of museum tours
• Criteria
 – Tour properties
 – Physical space
 – Locator
 – Content
 – Interaction
• Derived properties of a good mobile museum tour
Exploration phase

Museum tour analysis

- Different types of museum tours
- Different criteria
- Derived properties of a good mobile museum tour
Approach

- Exploration phase
 - Museum tour analysis
 - Scenarios
 - Requirements
 - Technology analysis
- Design phase
- Implementation phase
Approach

- Exploration phase
 - Museum tour analysis
 - Scenarios
 - RFID Reader scenario
 - Requirements
 - Technology analysis
- Design phase
- Implementation phase
Approach

- Create tour and upload tour:
 - Client:
 - Mobile device
 - Mobile tour
 - Mobile tour data
 - Server:
 - Web server
 - CHIP demonstrator
 - CHIP data
 - TCP/IP

- Perform the tour in the museum:
 - Client:
 - Mobile tour data
 - Mobile device
 - RFID reader
 - Physical museum space:
 - Artworks with RFID tags
 - Radio Frequency
Approach

• Exploration phase
 – Museum tour analysis
 – Scenarios
 – Requirements
 – Technology analysis

• Design phase
• Implementation phase
Exploration phase

Requirements

- System requirements
- Synchronizing data
- Filtering and ordering
- User guidance and positioning
- Content
- Help
Approach

- Exploration phase
 - Museum tour analysis
 - Scenarios
 - Requirements
 - Technology analysis
- Design phase
- Implementation phase
Exploration phase

• Technology analysis
 – Device classes
 • PDA / Smart phone
 • Mobile phone
 • PMP (Portable Media Player)
 – Operating systems
 – Application type
 – User positioning technologies
 – Connection type
 – Communication standards
Exploration phase

- Technology analysis
 - Device classes
 - Operating systems
 - Windows Mobile
 - Symbian
 - Palm OS
 - Embedded Linux
 - Application type
 - User positioning technologies
 - Connection type
 - Communication standards
Exploration phase

- Technology analysis
 - Device classes
 - Operating systems
 - Application type
 - Web application
 - Standalone application
 - User positioning technologies
 - Connection type
 - Communication standards
Exploration phase

- Technology analysis
 - Device classes
 - Operating systems
 - Application type
 - User positioning technologies
 - GPS
 - RFID
 - Infrared
 - Bluetooth
 - Location-based wireless
 - Connection type
 - Communication standards
Exploration phase

• Technology analysis
 – Device classes
 – Operating systems
 – Application type
 – User positioning technologies
 – Connection type
 • Online
 • Offline
 – Communication standards
Exploration phase

- Technology analysis
 - Device classes
 - Operating systems
 - Application type
 - User positioning technologies
 - Connection type
 - Communication standards
 - Wi-Fi
 - UMTS / GPRS / EDGE
 - Bluetooth
 - Infrared
Approach

- Exploration phase
- Design phase
- Implementation phase
Design & Implementation

- Importing and synchronization
- Mapping
- User positioning
- User guidance
Design & Implementation

- Importing and synchronization
- Mapping
- User positioning
- User guidance
Design & Implementation

• Importing and synchronization
 – Tours
 – User Model

• CHIP RDF to XML
 – Mobile device supports XML
 – CHIP mobile data application provides XML interface
Design & Implementation

Mobile device
- Application data model
- Tour package
- Tour list

Web server
- Mobile user model
- CHIP user model
- CHIP RDF
- Navigation data
- Tour data

Object model	XML	TCP/IP
Application data model | Tour package | TCP/IP
Tour list | Mobile user model | TCP/IP

TU/e technische universiteit eindhoven
Design & Implementation

Synchronizing the User Model

- PostUserModel Servlet
- GetUserModel Servlet
- User model in XML

- CHIP Mobile Data Application
- XML Writer (DOM)
- SeRQL
- User model

- Mobile User model
- Website User model

Mobile device

CHIP Demonstrator RDF datastore

TU/e technische universiteit eindhoven
Design & Implementation

- Importing and synchronization
- Mapping
- User positioning
- User guidance
Design & Implementation

Mapping a virtual tour to the physical space

Artworks in virtual tour → Filter unavailable artworks → Unordered set of artworks → Ordered set of artworks → Apply constrains → Artworks in PMTMD
Design & Implementation

Mapping a virtual tour to the physical space

- Filter unavailable artworks:
 - Restricted to current exhibition
 - Rijksmuseum: Location data from CHIP RDF
Design & Implementation

Mapping a virtual tour to the physical space

- Ordering of tour artworks:
 - Locations play a role in physical space
 - Determine a logical order
 - Uses distances between artworks
Design & Implementation

Mapping a virtual tour to the physical space

- Apply constraints:
 - Set number of artworks or set duration
 - Estimate # of artworks and tour duration
 - Use walking time and attracting power
 - First removes lowest rating artworks and then most off-route artworks
Design & Implementation

Mapping a virtual tour to the physical space

Visualization:

- Filter unavailable artworks
- Set # of artworks
- Set tour duration
- Browse filtered artworks
Design & Implementation

- Importing and synchronization
- Mapping
- User positioning
- User guidance
Design & Implementation

User positioning

- Inspired by tour at NAI using Infrared technology
- We implement RFID technology
Design & Implementation

- Importing and synchronization
- Mapping
- User positioning
- User guidance
Design & Implementation

User guidance

Routing framework:
- Floors
- Rooms
- Doors
- Artworks
- Waypoints
Design & Implementation

User guidance

- Route calculation:
 - Basic route finding algorithm
- Adaptive user guidance:
 - Users do not follow proposed tour
 - Visit non-tour artworks
 - Different order
Current status

Mobile tour concept application

Future work:
- Interface improvements
- Multiple client applications
- Online tour
- Social functions
- More adaptation
Conclusion

We add dynamic, adaptive and personalized functions to mobile museum tours.

We proposed methods to:
- Import and synchronize tour and user data
- Map a tour from virtual to physical space

We add innovative elements:
- User positioning using RFID
- User guidance using the route framework

We showed how a museum tour can be implemented on a mobile device
Demonstration